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A spectral subgrid-scale eddy viscosity and magnetic resisitivity model based on the eddy-damped
quasi-normal Markovian (EDQNM) spectral kinetic and magnetic energy transfer presented in [12]
is used in large-eddy simulation (LES) of large kinetic and magnetic Reynolds number magneto-
hydrodynamic (MHD) turbulence. The proposed model is assessed via a posteriori tests on three-
dimensional, incompressible, isotropic, non-helical, freely-decaying MHD turbulence at asymptoti-
cally large Reynolds numbers. Using LES with an initial condition characterized by an Alfvén ratio
of kinetic to magnetic energy rA equal to unity, it is shown that the kinetic energy spectrum EK(k)
and magnetic energy spectrum EM (k) exhibit Kolmogorov −5/3 inertial subrange scalings in the
LES, consistent with the EDQNM model.

PACS numbers:

Numerical simulations for investigating the physics
of magnetohydrodynamic (MHD) turbulence are of the
greatest interest. As most astrophysical and geophysi-
cal plasmas (e.g. the liquid core of the Earth, accretion
disks, and star-forming molecular clouds) cannot be di-
rectly investigated experimentally, numerical simulations
are the method of choice for studying the properties of
such plasmas. In the field of applied and fundamen-
tal research related to engineering and physical sciences,
most flows are highly turbulent. Even with contemporary
supercomputing capability, direct numerical simulation
(DNS) remains limited to turbulent flows with modest
Reynolds numbers. Large-eddy simulation (LES) over-
comes this computational limitation by computing only
the largest resolved scales and modeling the effects of
the subgrid scales on these resolved scales using physical
arguments to approximate turbulent energy dissipation
and backscatter [7].

LES is based on the separation of the spatial scales
of motion: the resolved scales are directly computed
by solving partial differential equations consisting of the
usual governing equations supplemented with a subgrid-
scale term which account for the effects of the unresolved
scales of motion. Two different types of subgrid-scale
models can be used for isotropic turbulence: physical
space models for finite-element, finite-volume and finite-
difference methods, or spectral models for (pseudo)-
spectral methods. Physical space subgrid-scale models
for MHD flows are typically extensions of the models in-
troduced in the pure hydrodynamic case, but are used

along with non-spectral numerical methods which are
less accurate for the resolution of the small scales than
spectral methods. The numerical error induced by these
schemes is often very large in the vicinity of the cutoff
wave number, resulting in a poor estimate of the energy
transfer across the cutoff scale. On the other hand, spec-
tral methods are more accurate at the small scales where
the interscale dynamics can be well captured, yielding
an accurate prediction of the subgrid-scale energy trans-
fer. This remark is well founded, as shown by the energy
transfer cusp, observed near the cutoff in direct numer-
ical simulations. This cusp is underestimated in physi-
cal space eddy viscosity-type subgrid models with model
constants computed dynamically, as shown in [4] by com-
parison with filtered DNS data, whereas it is clearly
present in the spectral subgrid model as shown, for ex-
ample, in the small Prandtl number MHD subgrid-scale
model of Ponty et al. [6].

Historically, subgrid-scale models for MHD turbulence
expressed in physical space have been constructed by
extending the usual non-magnetic models to the case
of electrically-conducting fluids [11]. MHD gradient-
diffusion type subgrid-scale models have been assessed
for isotropic turbulence at magnetic Prandtl number
Prm = 1 [1, 4] and at small magnetic Prandtl num-
ber [3]. In the anisotropic case, this type of subgrid-
scale model was used for turbulent channel flow at small
magnetic Prandtl number and kinetic Reynolds number
Re = 29000 [10]. Additionally, a physical space subgrid-
scale model based on the ideal cross-helicity invariant of



MHD turbulence has been developed [4, 5] to account for
the cross-helicity inverse cascade in the energy transfer.
These models appear to capture the principal features of
incompressible homogeneous MHD turbulence at a com-
putational cost orders of magnitude lower than a DNS.

More recently, a spectral subgrid-scale model was de-
veloped for MHD turbulence [12] using an analysis of
the eddy-damped quasi-normal Markovian (EDQNM)
subgrid-scale kinetic and magnetic energy transfers in
isotropic turbulence; however, this model has not yet
been assessed using LES. This model was derived by ap-
plying a sharp Fourier cutoff filter to the spectral en-
ergy transfer equations, generalizing the analysis in [8] to
MHD turbulence. In the case of small magnetic Prandtl
number statistically-stationary turbulence with an exter-
nal constant large-scale magnetic field, Ponty et al. [6]
empirically constructed a Chollet-Lesieur [2] type spec-
tral subgrid model. In these small magnetic Prandtl
number simulations, the magnetic field fluctuations are
fully resolved and the subgrid velocity fluctuations are
modeled using LES. The results were found to be in good
agreement with existing experimental data for large ki-
netic Reynolds number.

In nondimensional form, the unforced incompressible
MHD equations (with unit constant density) are written
as

∂v
∂t

+ v ·∇v = (∇× b) × b −∇p + νT ∇2v (1)

∂b
∂t

= ∇× (u × b) + ηT ∇2b (2)

∇ · v = 0 , ∇ · b = 0 ,

where v is the fluid velocity, b is the magnetic field, p is
the hydrodynamic pressure, and νT and ηT are the eddy
viscosity and magnetic resistivity, respectively. Only in-
finite kinetic and magnetic Reynolds numbers are con-
sidered, so that the only dissipative mechanism in the
system is the EDQNM-based spectral eddy viscosity and
magnetic resistivity.

As shown in [12], the eddy viscosity and resistivity
are much larger than the backscatter counterpart, except
very close to the cusp k/kc ! 1 where the ratio is still
larger than two. Therefore, the effect of backscatter on
the total amount of subgrid transfer will be neglected in
the present study. To parameterize the eddy viscosity
νT and magnetic resistivity ηT for use in the LES, these
functions are fit as a function of k/kc from the numerical
values obtained from the EDQNM closure computations
[9, 12]. The form used for ν+(k|kc; t) and η+(k|kc; t) is
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where kc is the cutoff wavenumber, and the eddy viscosity
and magnetic resistivity are conventionally normalized as

νT (k|kc; t) = ν+(k|kc; t)

√
EK(kc, t)

kc
(3)

ηT (k|kc; t) = η+(k|kc; t)

√
EM (kc, t)

kc
. (4)

The kinetic and magnetic energy are

EK(t) =
1
2

∫

V
v2 d3x , (5)

EM (t) =
1
2

∫

V
b2 d3x , (6)

respectively, with V the volume of the domain. The
kinetic to magnetic energy (Alfvén) ratio rA =
EK(t)/EM (t) characterizes the energy ratio at the large
scales of the flow. The kinetic and magnetic enstrophies
are

ΩK(t) =
1
2

∫

V
(∇× v)2 d3x , (7)

ΩM (t) =
1
2

∫

V
(∇× b)2 d3x , (8)

respectively. The kinetic to magnetic enstrophy ratio
rB = ΩK(t)/ΩM (t) characterizes the energy ratio at the
small scales of the flow.

A three-dimensional freely-decaying LES is performed
in a (2π)3 periodic computational domain using uniform
N3 = 1283 and N3 = 643 computational grids. The
dissipative terms in the kinetic and magnetic equations
are given respectively by (3) and (4).

The initial fields are constructed as a sum of large-
scale Fourier modes with random amplitudes and phases.
The kinetic and magnetic energy are both normalized
to 0.5 (rA = 1) and the initial cross-correlation Ec =
2〈|u · b|〉/〈u2 + b2〉 is approximately 0.2.

The simulation is performed using a pseudospectral
code to solve the incompressible three-dimensional equa-
tions (1)–(2) with desaliasing performed according to
the 2/3 rule. A third-order Runge-Kutta scheme is
used for the time integration with a constant timestep
∆t = 2.5 × 10−3.

The temporal evolution of the kinetic and magnetic
energy exhibits a self-similar decay between t = 5 and
18 as shown in Fig. 2. During this period, the ki-
netic energy decreases slightly more rapidly according to
EK(t) ∼ t−1.4 than the magnetic energy EM (t) ∼ t−1.3.
Figures (5) and (6) show the kinetic and magnetic spectra
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FIG. 1: The eddy viscosity (top) and magnetic resistivity
(bottom): fit (–) and values from EDQNM closure calculation
(+).

at times t = 7.5, 8.5, 9.5, 10.5, 11.5 and 12.5. An inertial
subrange with slope −5/3 is observed for both spectra,
consistent with the EDQNM model [12]. The kinetic and
magnetic spectra are shown at different times to show
that the simulations are well converged. Between t = 0
and 18, the large-scale ratio rA decreases from 1 to 0.4,
whereas the small-scale ratio rB is stabilized near 0.7 be-
tween t = 2.5 and 18. This ratio variation in the freely-
decaying turbulent case shows that the EDQNM-based
LES method could possibly be improved by considering
eddy viscosities and magnetic resistivities depending on
the Alfvén ratio even if the small-scale ratio rB remains
approximately constant during the course of the simula-
tion.

The spectral subgrid-scale eddy viscosity and resisitiv-
ity obtained from EDQNM closure calculations [12] have
been parameterized and used to perform LES of three-
dimensional, isotropic, non-helical, incompressible, mag-
netohydrodynamic turbulent flow for quasi-equipartition
of energy, i.e. rA ∼ 1. This subgrid-scale model is ro-
bust, as the LES predict −5/3 inertial subrange kinetic
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FIG. 2: Temporal evolution of the kinetic (–) and magnetic
(−−) energy (top) and of the enstrophy (bottom) between
t = 0 and 18.
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FIG. 3: Temporal evolution of the kinetic to magnetic energy
ratio rA (–) and of the kinetic to magnetic enstrophy ratio rB

(−−) between t = 0 and 18.
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FIG. 4: Temporal evolution of the correlation Ec = 2〈|u ·
b|〉/〈u2 + b2〉 between t = 0 and 18.
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FIG. 5: Log-log plot of the kinetic energy spectrum EK(k, t)
normalized by EK(t): N3 = 1283 (–) and N3 = 64 (+).

and magnetic energy spectra, even when the Alfvén ratio
decreases from 1 to 0.4 as shown in the simulations.
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FIG. 6: Log-log plot of the magnetic energy spectrum
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